ar X iv : 1 51 1 . 05 00 9 v 1 [ m at h . C O ] 1 6 N ov 2 01 5 What Graphs are 2 - Dot Product Graphs ? ⋆

نویسندگان

  • Matthew Johnson
  • Daniël Paulusma
  • Erik Jan van Leeuwen
چکیده

Let d ≥ 1 be an integer. From a set of d-dimensional vectors, we obtain a d-dot product graph by letting each vector au correspond to a vertex u and by adding an edge between two vertices u and v if and only if their dot product au · av ≥ t, for some fixed, positive threshold t. Dot product graphs can be used to model social networks. Recognizing a d-dot product graph is known to be NP-hard for all fixed d ≥ 2. To understand the position of d-dot product graphs in the landscape of graph classes, we consider the case d = 2, and investigate how 2-dot product graphs relate to a number of other known graph classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 05 17 6 v 3 [ m at h . R T ] 1 7 N ov 2 00 4 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE

A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.

متن کامل

ar X iv : m at h / 06 11 62 6 v 1 [ m at h . C O ] 2 1 N ov 2 00 6 COUNTING LINKS IN COMPLETE GRAPHS

We find the minimal number of links in an embedding of any complete k-partite graph on 7 vertices (including K 7 , which has at least 21 links). We give either exact values or upper and lower bounds for the minimal number of links for all complete k-partite graphs on 8 vertices. We also look at larger complete bipartite graphs, and state a conjecture relating minimal linking embeddings with min...

متن کامل

ar X iv : m at h / 99 11 07 4 v 1 [ m at h . Q A ] 1 1 N ov 1 99 9 CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF THE QUANTUM AFFINE

We give a realization of crystal graphs for basic representations of the quantum affine algebra Uq(C (1) 2) in terms of new combinatorial objects called the Young walls.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015